Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[cobalt(II)-di- μ-chloridoκ^{4} CI: CI- μ-1,5-dimethyl-1 H -tetrazole$\left.\kappa^{2} N^{3}: N^{4}\right]$: an X-ray powder investigation

Ludmila S. Ivashkevich,* Alexander S. Lyakhov, Anastasiya P. Mosalkova, Pavel N. Gaponik and Oleg A. Ivashkevich

Research Institute for Physico-Chemical Problems of Belarusian State University, Leningradskaya Street 14, Minsk 220030, Belarus
Correspondence e-mail: iva@bsu.by
Received 27 November 2008; accepted 23 January 2009
Key indicators: powder X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA ; R$ factor $=$ $0.018 ; w R$ factor $=0.024$; data-to-parameter ratio $=19.9$.

The asymmetric unit of the title compound, $\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right]_{n}$, contains two Co atoms, both lying on inversion centres, two Cl atoms and one 1,5-dimethyltetrazole ligand. The coordination polyhedra of both Co atoms adopt flattened octahedral geometry, with two N atoms from two ligands in axial positions and four Cl atoms in equatorial sites. Neighbouring Co atoms are linked together via two bridging Cl atoms and one tetrazole ring to form polymeric chains running along the a axis.

Related literature

For the crystal structure of a related Cu complex, see: Ivashkevich et al. (2006). For values of radii for ions with octahedral coordination and molecular geometric parameters, see: Shannon (1976) and Allen (2002), respectively. For details of the indexing algorithm, see: Werner et al. (1985).

Experimental

Crystal data
$\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right]$
$M_{r}=227.95$
Triclinic, $P \overline{1}$
$a=6.7159$ (4) \AA
$b=7.5986$ (4) \AA
$c=8.9231$ (5) \AA
$\alpha=108.639$ (2) ${ }^{\circ}$
$\beta=107.259(3)^{\circ}$
$\gamma=105.769(3)^{\circ}$
$V=376.72$ (4) \AA^{3}

$$
Z=2
$$

Co $K \alpha$ radiation
$T=295 \mathrm{~K}$
Specimen shape: flat sheet
$30 \times 30 \times 1 \mathrm{~mm}$
Specimen prepared at 100 kPa
Specimen prepared at 295 K
Particle morphology: finely ground powder, light-violet

Data collection

HZG-4A (Carl Zeiss, Jena)
diffractometer
Specimen mounting: packed powder pellet

Refinement

$R_{\mathrm{p}}=0.018$
$R_{\mathrm{wp}}=0.024$
$R_{\text {exp }}=0.025$
$R_{\mathrm{B}}=0.023$
$S=0.97$
Wavelength of incident radiation: 1.79021 A

Excluded region(s): none

Specimen mounted in reflection mode
Scan method: step
$2 \theta_{\text {min }}=11.0,2 \theta_{\text {max }}=130.0^{\circ}$
Increment in $2 \theta=0.02^{\circ}$

Profile function: psevdo-Voigt, $\eta=0.664(5)$
896 reflections
45 parameters
7 restraints
H -atom parameters constrained
Preferred orientation correction: none

Table 1
Selected bond lengths (\AA).

$\mathrm{Co} 1-\mathrm{Cl} 2$	$2.461(3)$	$\mathrm{Co} 2-\mathrm{Cl} 1$	$2.446(3)$
$\mathrm{Co} 1-\mathrm{N} 4$	$2.224(10)$	$\mathrm{Co} 2-\mathrm{N} 3$	$2.111(9)$
$\mathrm{Co} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$2.482(3)$	$\mathrm{Co} 2-\mathrm{Cl} 2^{\mathrm{ii}}$	$2.479(3)$

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1, y, z$.
Data collection: local program; cell refinement: FULLPROF (Rodríguez-Carvajal, 2001); data reduction: local program; program(s) used to refine structure: FULLPROF; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: FULLPROF, SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

This work was supported by the Belarusian Foundation for Fundamental Research (grant No. X08-139).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2491).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Ivashkevich, L. S., Lyakhov, A. S., Gaponik, P. N., Degtyarik, M. M., Ivashkevich, O. A., Tiutiunnikov, S. I. \& Efimov, V. V. (2006). Acta Cryst. C62, m607-m609.
Rodríguez-Carvajal, J. (2001). FULLPROF. CEA/Saclay, France.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Werner, P.-E., Eriksson, L. \& Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.

supplementary materials

catena-Poly[cobalt(II)-di- μ-chlorido- $\kappa^{4} \mathrm{Cl}: \mathrm{Cl}-\mu$-1,5-dimethyl-1H-tetrazole- $\left.\kappa^{2} N^{3}: N^{4}\right]$: an X-ray powder investigation

L. S. Ivashkevich, A. S. Lyakhov, A. P. Mosalkova, P. N. Gaponik and O. A. Ivashkevich

Comment

In our previous paper (Ivashkevich et al., 2006) we reported the crystal structure of copper(II) chloride complex with 1,5dimethyltetrazole, $\mathrm{CuCl}_{2} \mathrm{~L}$. That was the first experimental findings of bridge coordination of 1,5-disubstituted tetrazoles through the tetrazole ring bridge N3-N4. In the present work, we report another example of such type complexes, namely the title complex of cobalt(II) chloride with 1,5-dimethyltetrazole, (I).

Complex (I) has a 1:1 metal-to-ligand ratio of cobalt(II) with the 1,5-dimethyltetrazole. The asymmetric unit contains two Co atoms, both lying on inversion centres, two Cl atoms and one 1,5-dimethyltetrazole molecule, all in general positions. Co 1 is bonded to the tetrazole ring atoms N 4 , whereas Co 2 coordinates the tetrazole ring atoms N 3 (Fig. 1). The tetrazole ring geometry is typical of 1 - and 1,5 -substituted tetrazoles. The complex is a one-dimensional coordination polymer, with polymeric chains running along the a axis (Fig.1,2). The chains are formed due to chloride bridges and the tetrazole ring bridges $\mathrm{N} 3-\mathrm{N} 4$ between the neighbouring Co atoms.

Complex (I) is isotypic with the above copper(II) analogue, and it is of interest to compare the structures of the compounds. Whereas Cu coordination octahedra show essential elongation of axial $\mathrm{Cu}-\mathrm{Cl}$ bonds compared to equatorial $\mathrm{Cu}-\mathrm{Cl}$ and $\mathrm{Cu}-\mathrm{N}$ ones, Co octahedra are flattened, with axial $\mathrm{Co}-\mathrm{N}$ bonds and very similar in lengths equatorial $\mathrm{Co}-\mathrm{Cl}$ bonds. In Co1 and Co2 octahedra, the difference between the axial and equatorial bond lengths (Table 1), being much less than that in the Cu octahedra, may be related to difference in size of Cl and N atoms. However, essential elongation of the Cu octahedra is probably induced by the Jahn-Teller effect. In complex (I), closely spaced values of all Co-Cl bond lengths are responsible for rather symmetrical chloride bridges between the neighbouring Co atoms in polymeric chains, in contrast to copper(II) analogue with non-symmetrical chloride bridges.

Comparing the cell volumes of the two isotypic compounds [374.15 (4) \AA^{3} for Cu complex and 376.72 (4) \AA^{3} for Co one and taking into account octahedral ionic radii (Shannon, 1976) of $\mathrm{Cu}^{\text {II }}(0.73 \AA)$ and $\mathrm{Co}^{\mathrm{II}}$ ($0.65 \AA$ for low-spin state and $0.75 \AA$ for high-spin state), one may expect that cations $\mathrm{Co}^{\mathrm{II}}$ in complex(I) are in high-spin state at room temperature. This conclusion is confirmed by EPR investigation of the complex, which does not reveal EPR spectra at room temperature. As known, $\mathrm{Co}^{\text {II }}$ cations in high-spin state shows EPR signals only at very low temperatures.

Experimental

A solution, containing $1.17 \mathrm{~g}(0.005 \mathrm{~mol})$ of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in 10 ml of a mixture of methanol and triethyl orthoformate $(v / v$ $=1: 1$), was added to a solution of 1,5 -dimethyltetrazole ($0.5 \mathrm{~g}, 0.0051 \mathrm{~mol}$) in 10 ml of the same solvent mixture. After stirring the reaction mixture at $323-333 \mathrm{~K} \mathrm{C}$ for 0.5 h , the obtained light-violet crystals of (I) were filtered off, washed with methanol ($2 \times 5 \mathrm{ml}$), and dried in air [0.96 g , yield 84%; m.p. 633 K (decomposition)]. Calc. (\%): Co 25.8, Cl 30.6. Found
 $1383(s), 1332(s), 1265(m), 1235(s), 1144(s), 1090(\mathrm{w}), 1060(s), 1031(m), 739(s), 681(\mathrm{~m}), 607(\mathrm{w}), 565(\mathrm{w}), 525(\mathrm{w})$.

Refinement

For complex (I), a triclinic unit cell $\left(\mathrm{a}=6.728, \mathrm{~b}=7.596, \mathrm{c}=8.764 \AA, \alpha=109.62, \beta=102.96, \gamma=105.70^{\circ}\right)$ was determined using the indexing program TREOR90 (Werner et al., 1985). The obtained values as well as observed resemblance of powder patterns indicated isotypism of (I) with investigated earlier coordination polymers $\mathrm{CuCl}_{2} \mathrm{~L}$, where $L=1,5$-dimethyltetrazole, crystallizing in the space group $P \overline{1}$ (Ivashkevich et al., 2006). This space group and the atomic coordinates of the above copper(II) complex were used as starting parameters for the Rietveld refinement of (I) with the FULLPROF program (Rodríguez-Carvajal, 2001). However, the refinement found difficulty in reaching the agreement of experimental and calculated intensities of reflections. From this fact an assumption was made that the above unit-cell dimensions were inconsistent with the initial atomic coordinates. Search for alternative unit cells resulted in the following cell: $\mathrm{a}^{\prime}=6.728, \mathrm{~b}^{\prime}=7.596, c^{\prime}$ $=8.997 \AA ; \alpha^{\prime}=108.35, \beta^{\prime}=107.50, \gamma^{\prime}=105.70^{\circ}$, which is of the same volume and related to the first one by the vector transformation $\mathrm{a}^{\prime}=-\mathrm{a}, \mathrm{b}^{\prime}=-\mathrm{b}, \mathrm{c}^{\prime}=\mathrm{a}+\mathrm{b}+\mathrm{c}$. This cell provided a good agreement of the observed and calculated intensities.

Background intensity was found by Fourier filtering technique as implemented in the FULLPROF program, under visual inspection of the resulting background curve. Correction for profile asymmetry was made for reflections up to $2 \theta=25^{\circ}$.

The H atoms of the methyl groups were placed in geometrically calculated positions using the program SHELXL97 (Sheldrick, 2008), with displacement parameter $\mathrm{B}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{~B}_{\mathrm{iso}}(\mathrm{C})$. Non- H atoms were refined isotropically. Four independent $\mathrm{B}_{\text {iso }}$ parameters were employed: one for the two Co , one for the two Cl atoms, one for all N and C atoms of the tetrazole ring, and one for the C atoms of the methyl groups.

For the refinement, suitable restraints were imposed on bond lengths of the ligand molecule, based on a geometry analysis of 1,5-alkyltetrazoles (Cambridge Structural Database, version 5.29 of November 2007; Allen, 2002). The restraints were set as $\mathrm{d}(3 \sigma)$, where d are mean values of bond distances resulting from a CSD survey, and σ are their s.u. values. For the refined atomic coordinates of (I), the s.u. values are taken from the software and likely to be underestimated.

The observed, calculated and difference diffraction patterns for the refined crystal structure are shown in Fig. 3 (20 range of $11-90^{\circ}$ is presented).

Figures

Fig. 3. The Rietveld plot for (I), showing the observed (red circles), calculated (black line) and difference (blue line) patterns. The reflection positions are shown as vertical bars above the difference pattern.

catena-Poly[cobalt(II)-di- μ-chlorido- $\kappa^{4} \mathrm{Cl}: \mathrm{Cl}-\mu-\backslash 1,5-d i m e t h y l-1 H$-tetrazole- $\kappa^{2} \mathrm{~N}^{3}: \mathrm{N}^{4}$]

Crystal data

$\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right]$
$M_{r}=227.95$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=6.7159$ (4) \AA
$b=7.5986$ (4) \AA
$c=8.9231(5) \AA$
$\alpha=108.639(2)^{\circ}$
$\beta=107.259(3)^{\circ}$
$\gamma=105.769(3)^{\circ}$
$V=376.72(4) \AA^{3}$

Data collection

HZG-4A (Carl Zeiss, Jena)
diffractometer
Monochromator: Fe filtered
Specimen mounting: packed powder pellet
Specimen mounted in reflection mode
Scan method: step
$Z=2$
$F_{000}=226$
$D_{\mathrm{x}}=2.010 \mathrm{Mg} \mathrm{m}^{-3}$
Co K α radiation
$\lambda=1.79021 \AA$
$T=295 \mathrm{~K}$
Specimen shape: flat sheet
$30 \times 30 \times 1 \mathrm{~mm}$
Specimen prepared at 100 kPa
Specimen prepared at 295 K
Particle morphology: finely ground powder, light-violet
$T=295 \mathrm{~K}$
$2 \theta_{\text {min }}=11.00,2 \theta_{\max }=130.00^{\circ}$
Increment in $2 \theta=0.02^{\circ}$
Increment in $2 \theta=0.02^{\circ}$

Refinement

Refinement on $I_{\text {ne }}$
Least-squares matrix: full with fixed elements per cycle
$R_{\mathrm{p}}=0.018$
$R_{\mathrm{wp}}=0.024$
$R_{\text {exp }}=0.025$
$R_{\mathrm{B}}=0.023$
$S=0.97$
Wavelength of incident radiation: $1.79021 \AA$

Excluded region(s): none
Profile function: psevdo-Voigt, $\eta=0.664(5)$
45 parameters
7 restraints
H -atom parameters constrained
Weighting scheme based on measured s.u.'s?
$(\Delta / \sigma)_{\max }=0.002$
Preferred orientation correction: none

supplementary materials

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Co1	0.00000	1.00000	0.00000	$0.0183(8)^{*}$
Co2	0.50000	1.00000	0.00000	$0.0183(8)^{*}$
C11	$0.6168(5)$	$0.7266(4)$	$-0.1147(4)$	$0.0254(9)^{*}$
Cl2	$-0.1025(5)$	$1.1819(4)$	$0.2275(4)$	$0.0254(9)^{*}$
N1	$0.3124(10)$	$0.7423(14)$	$0.3267(10)$	$0.032(2)^{*}$
N2	$0.4540(11)$	$0.8008(13)$	$0.2565(10)$	$0.032(2)^{*}$
N3	$0.3888(9)$	$0.8891(13)$	$0.1626(10)$	$0.032(2)^{*}$
N4	$0.1745(10)$	$0.8607(14)$	$0.1504(11)$	$0.032(2)^{*}$
C5	$0.1349(12)$	$0.783(2)$	$0.2552(15)$	$0.032(2)^{*}$
C6	$-0.0585(12)$	$0.7367(16)$	$0.2934(13)$	$0.035(3)^{*}$
H6A	-0.03346	0.68164	0.37682	0.053^{*}
H6B	-0.19026	0.63786	0.18797	0.053^{*}
H6C	-0.08251	0.85734	0.33971	0.053^{*}
C7	$0.3895(17)$	$0.6847(16)$	$0.4623(10)$	$0.035(3)^{*}$
H7A	0.52906	0.66940	0.46948	0.053^{*}
H7B	0.27627	0.55778	0.43745	0.053^{*}
H7C	0.41569	0.78730	0.57057	0.053^{*}

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

Col-Cl2	2.461 (3)	N1-C5	1.341 (14)
Co1-N4	2.224 (10)	N1-C7	1.419 (14)
Col-Cl1 ${ }^{\text {i }}$	2.482 (3)	N2-N3	1.283 (13)
$\mathrm{Co}-\mathrm{Cl}^{\text {ii }}$	2.461 (3)	N3-N4	1.361 (11)
$\mathrm{Col}-\mathrm{N} 4{ }^{\text {ii }}$	2.224 (10)	N4-C5	1.307 (17)
$\mathrm{Col-Cl1}{ }^{\text {iii }}$	2.482 (3)	C5-C6	1.421 (15)
Co2-Cl1	2.446 (3)	C6-H6A	0.9600
Co2-N3	2.111 (9)	C6-H6B	0.9600
$\mathrm{Co} 2-\mathrm{Cl2} 2^{\text {iv }}$	2.479 (3)	C6-H6C	0.9600
$\mathrm{Co} 2-\mathrm{Cl2}{ }^{\text {ii }}$	2.479 (3)	C7-H7A	0.9600
$\mathrm{Co} 2-\mathrm{Cl} 1{ }^{\text {iii }}$	2.446 (3)	C7-H7B	0.9600
$\mathrm{Co} 2-\mathrm{N} 3{ }^{\text {iii }}$	2.111 (9)	C7-H7C	0.9600
N1-N2	1.340 (12)		
$\mathrm{Cl} 2-\mathrm{Col}-\mathrm{N} 4$	95.5 (2)	$\mathrm{Cl1}{ }^{\text {iii }}-\mathrm{Co} 2-\mathrm{N} 3{ }^{\text {iii }}$	94.9 (3)
$\mathrm{Cl1}{ }^{\text {i }}-\mathrm{Col}-\mathrm{Cl} 2$	84.91 (11)	$\mathrm{Co1} 1^{\text {iv }}-\mathrm{Cl1}-\mathrm{Co} 2$	85.92 (10)
$\mathrm{Cl} 2-\mathrm{Co} 1-\mathrm{Cl}^{\text {ii }}$	180.00	$\mathrm{Co} 1-\mathrm{Cl} 2-\mathrm{Co} 2{ }^{\text {i }}$	85.65 (10)

sup-4

$\mathrm{Cl} 2-\mathrm{Co} 1-\mathrm{N} 4{ }^{\text {ii }}$	84.5 (2)	N2-N1-C5	103.6 (9)
$\mathrm{Cl1}{ }^{\text {iii }}-\mathrm{Co} 1-\mathrm{Cl} 2$	95.09 (11)	N2-N1-C7	118.7 (8)
$\mathrm{Cl1}{ }^{\text {i }}$ - $\mathrm{Col-N4}$	93.6 (3)	C5-N1-C7	137.0 (10)
$\mathrm{Cl} 2{ }^{\text {iii }} \mathrm{Co} 1-\mathrm{N} 4$	84.5 (2)	N1-N2-N3	113.8 (8)
$\mathrm{N} 4-\mathrm{Col}-\mathrm{N} 4{ }^{\text {ii }}$	180.00	Co2-N3-N2	136.1 (6)
$\mathrm{Cl1}{ }^{\text {iii }}-\mathrm{Co} 1-\mathrm{N} 4$	86.4 (3)	Co2-N3-N4	119.0 (7)
$\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{Cl}^{\text {ii }}$	95.09 (11)	N2-N3-N4	103.5 (8)
$\mathrm{Cl1}{ }^{\text {i }}-\mathrm{Co} 1-\mathrm{N} 4{ }^{\text {ii }}$	86.4 (3)	Col-N4-N3	115.1 (7)
$\mathrm{Cl1}{ }^{\text {i }}$ - $\mathrm{Col}-\mathrm{Cl} 1^{\text {iii }}$	180.00	Co1-N4-C5	134.3 (7)
$\mathrm{Cl} 2{ }^{\text {ii }}-\mathrm{Col}-\mathrm{N} 4{ }^{\text {ii }}$	95.5 (2)	N3-N4-C5	109.6 (9)
$\mathrm{Cl1} 1^{\mathrm{iii}}-\mathrm{Col}-\mathrm{Cl}^{\text {ii }}$	84.91 (11)	N1-C5-N4	108.8 (9)
$\mathrm{Cl} 1{ }^{\text {iii }}-\mathrm{Col}-\mathrm{N} 4{ }^{\text {ii }}$	93.6 (3)	N1-C5-C6	121.2 (12)
$\mathrm{Cl} 1-\mathrm{Co} 2-\mathrm{N} 3$	94.9 (3)	N4-C5-C6	130.0 (11)
$\mathrm{Cl} 1-\mathrm{Co} 2-\mathrm{Cl2} 2^{\text {iv }}$	85.31 (11)	C5-C6-H6A	109.00
$\mathrm{Cl} 1-\mathrm{Co} 2-\mathrm{Cl} 2{ }^{\text {ii }}$	94.69 (11)	C5-C6-H6B	109.00
$\mathrm{Cl1}-\mathrm{Co} 2-\mathrm{Cl1} 1^{\text {iii }}$	180.00	C5-C6-H6C	110.00
$\mathrm{Cl} 1-\mathrm{Co} 2-\mathrm{N} 3{ }^{\text {iii }}$	85.1 (3)	H6A-C6-H6B	109.00
$\mathrm{Cl} 2{ }^{\text {iv }}-\mathrm{Co} 2-\mathrm{N} 3$	91.3 (2)	H6A-C6-H6C	110.00
$\mathrm{Cl} 2{ }^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{N} 3$	88.7 (2)	H6B-C6-H6C	110.00
$\mathrm{Cl} 1{ }^{\text {iii }}-\mathrm{Co} 2-\mathrm{N} 3$	85.1 (3)	N1-C7-H7A	109.00
$\mathrm{N} 3-\mathrm{Co} 2-\mathrm{N} 3{ }^{\text {iii }}$	180.00	N1-C7-H7B	109.00
$\mathrm{Cl} 2{ }^{\text {iv }}-\mathrm{Co} 2-\mathrm{Cl}^{\text {ii }}$	180.00	N1-C7-H7C	109.00
$\mathrm{Cl1} 1{ }^{\text {iii }}-\mathrm{Co} 2-\mathrm{Cl}^{\text {iv }}$	94.69 (11)	H7A-C7-H7B	109.00
$\mathrm{Cl} 2^{\mathrm{iv}}-\mathrm{Co} 2-\mathrm{N} 3^{\mathrm{iii}}$	88.7 (2)	H7A-C7- H 7 C	110.00
$\mathrm{Cl} 1^{\mathrm{iii}}-\mathrm{Co} 2-\mathrm{Cl} 2^{\mathrm{ii}}$	85.31 (11)	H7B-C7-H7C	110.00
$\mathrm{Cl} 2{ }^{\text {ii }}-\mathrm{Co} 2-\mathrm{N} 3{ }^{\text {iii }}$	91.3 (2)		

Symmetry codes: (i) $x-1, y, z$; (ii) $-x,-y+2,-z$; (iii) $-x+1,-y+2,-z$; (iv) $x+1, y, z$.
supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

